Subtypes of Disability in Older Persons over the Course of Nearly 8 Years

Thomas M. Gill, MD, Zhenchao Guo, MD, PhD, and Heather G. Allore, PhD

OBJECTIVES: To characterize distinct and clinically meaningful subtypes of disability, defined based on the number and duration of disability episodes, and to determine whether the incidence of these disability subtypes differ according to age, sex, or physical frailty.

DESIGN: Prospective cohort study.

SETTING: Greater New Haven, Connecticut.

PARTICIPANTS: Seven hundred fifty-four community-living residents aged 70 and older and initially nondisabled in four essential activities of daily living.

MEASUREMENTS: Disability was assessed during monthly telephone interviews for nearly 8 years; physical frailty was assessed during comprehensive home-based assessments at 18-month intervals. The incidence of five disability subtypes was determined within the context of the 18-month intervals in participants who were nondisabled at the start of the interval: transient, short-term, long-term, recurrent, and unstable.

RESULTS: Incident disability was observed in 29.8% of the 18-month intervals. The most common subtypes were transient disability (9.7% of all intervals), defined as a single disability episode lasting only 1 month, and long-term disability (6.9%), defined as one or more disability episodes, with at least one lasting 6 or more months. Approximately one-quarter (24.7%) of all participants had two or more intervals with an incident disability subtype. Although there were no sex differences in the incidence rates for any of the subtypes, differences in rates were observed for each subtype according to age and physical frailty, with only one exception, and were especially large for long-term disability.

Key words: aged; cohort studies; disability evaluation; activities of daily living

During the past decade, evidence supporting the dynamic nature of disability has emerged with the availability of multiple waves of data from longitudinal studies, such as the Established Populations for Epidemiologic Studies of the Elderly, the Longitudinal Study on Aging, and the National Long-Term Care Survey. As noted previously, these and other studies have documented transitions in disability that have followed nearly every conceivable pattern. Nonetheless, the long intervals, ranging from 6 months to 6 years, between the assessments of disability have somewhat limited the ability of these studies to precisely characterize the course of disability over time.

Informed by an ongoing longitudinal study that includes monthly assessments of functional status over the course of nearly 8 years, it was recently shown that disability is reversible and often recurrent. Moreover, it was found that multiple transitions between different disability states are common in older persons, particularly those who are physically frail, and that the range in number of these transitions is large. These findings support an emerging paradigm of disability as a complex and highly dynamic process with considerable heterogeneity, and they highlight the need for additional research to further enhance understanding of the disabling process in older persons. The objectives of the current study were twofold: first, to characterize distinct and clinically meaningful subtypes of disability, and second, to determine whether the incidence of these disability subtypes differ according to age, sex, or physical frailty, a state of increased vulnerability to an array of adverse outcomes.

METHODS

Study Population

Participants were members of the Precipitating Events Project, a longitudinal study of 754 community-living persons aged 70 and older who were initially nondisabled (required no personal assistance) in four essential activities of daily living.
living (ADLs)—bathing, dressing, walking inside the house, and transferring from a chair. Exclusion criteria included significant cognitive impairment with no available proxy, inability to speak English, diagnosis of a terminal illness with a life expectancy less than 12 months, and a plan to move out of the New Haven area during the next 12 months.

The assembly of the cohort, which took place between March 1998 and October 1999, has been described in detail elsewhere. Potential participants were identified from a computerized list of 3,157 age-eligible members of a large health plan in greater New Haven, Connecticut. To minimize potential selection effects, each member was assigned a unique number using a computerized randomization program, and screening for eligibility and enrollment proceeded sequentially. Eligibility was determined during a screening telephone interview and was confirmed during an in-home assessment. Persons who were physically frail, as denoted by a timed score of longer than 10 seconds on the rapid gait test (walk back and forth over a 10-foot (3-m) course as quickly as possible), were oversampled to ensure a sufficient number of participants at high risk for disability, as described in detail elsewhere. In brief, after the prespecified number of nonfrail participants were enrolled, potential participants were excluded if they had a low likelihood of physical frailty based on the telephone screen and, subsequently, if they were found not to be physically frail during the in-home assessment. In the absence of a criterion standard, operationalizing physical frailty as slow gait speed is justified by its high face validity, clinical feasibility, and strong epidemiological link to functional decline and disability of gait speed. Only 4.6% of the 2,733 health plan members who were alive and could be contacted refused to complete the screening telephone interview, and 75.2% of the eligible members agreed to participate in the project. Persons who refused to participate did not differ significantly from those who were enrolled in terms of age or sex. The Yale Human Investigation Committee approved the study protocol, and all participants provided verbal informed consent.

Data Collection

Comprehensive home-based assessments were completed at baseline and then at 18-month intervals for 90 months; telephone interviews were completed monthly for up to 90 months. Deaths were ascertained by review of the local obituaries and from informants during subsequent telephone interviews. Two hundred eighty-six (37.9%) participants died after a median follow-up of 50 months, and 36 (4.8%) dropped out of the study after a median follow-up of 22 months. Data were otherwise available for 99.4% of the 56,266 monthly telephone interviews, with little difference between those who did (98.9%) and did not (99.6%) die.

During the comprehensive assessments, data were collected on demographic characteristics, physical frailty as previously described, cognitive status as assessed using the Folstein Mini-Mental State Examination (MMSE), and nine self-reported, physician-diagnosed chronic conditions: hypertension, myocardial infarction, congestive heart failure, stroke, diabetes mellitus, arthritis, hip fracture, chronic lung disease, and cancer. Participants were considered to be cognitively impaired if they scored less than 24 on the MMSE.

Assessment of Disability

Complete details of the assessment of disability, including formal tests of reliability and accuracy, are provided elsewhere. During the monthly telephone interviews and each of the comprehensive assessments, participants were evaluated for disability using standard questions that were identical to those used during the screening telephone interview. For each of the four essential ADLs (bathing, dressing, walking, and transferring), participants were asked, “At the present time, do you need help from another person to [complete the task]?” Participants who needed help with any of the tasks were considered to be disabled. Operationalizing disability as the need for personal assistance, as opposed to difficulty, denotes a more-severe form of disability. Participants were not asked about eating, toileting, or grooming during the monthly interviews. The incidence of disability in these three ADLs is low in non-disabled, community-living older persons. Furthermore, it is highly uncommon for disability to develop in these ADLs without concurrent disability in bathing, dressing, walking, or transferring. In a subgroup of 91 participants who different interviewers interviewed twice within a 2-day period, it was found that the reliability of the disability assessment was substantial, with kappa = 0.75 for disability (present vs absent) in one or more of the four ADLs. Kappa was 1.0 for the 18 paired interviews that different interviewers completed independently on the same day. For participants with significant cognitive impairment, which was reassessed every 18 months, the monthly interviews were completed with a designated proxy. The accuracy of these proxy reports for disability, as determined during a sub-study in which 20 participants who were cognitively intact and their designated proxies were interviewed separately over the phone each month for 6 months, was excellent (kappa = 1.0). A proxy informant completed 10.5% of the 56,266 monthly interviews.

Disability Subtypes

The goal was to identify a set of distinct disability subtypes that were sufficiently common (i.e., constitute at least 10% of all disability subtypes) and clinically meaningful. The disability subtypes were defined based on the number and duration of disability episodes whose onset occurred within an 18-month interval (the time between the comprehensive assessments). This time interval has high face validity, because clinicians often use the next 12 to 24 months as a frame of reference when discussing prognosis with their older patients. In addition, many other longitudinal studies of disability have had assessment intervals ranging from 12 to 24 months. Based on the results of prior research, review of the literature, and preliminary review of the data from the monthly telephone interviews, five distinct disability subtypes were defined, as shown in Appendix A.

For an 18-month interval to be included, participants had to be nondisabled at the start of the interval, as determined during the corresponding comprehensive assessment. This was necessary to identify incident cases, thereby
ensuring temporal precedence when evaluating the association between physical frailty and the development of the disability subtypes in the current study and when identifying other potential risk factors and precipitants of the different disability subtypes in future studies. Intervals for which there was no comprehensive assessment and those that were less than 12 months long (due to death, loss to follow-up, or end of the follow-up period) were excluded. Of the 3,133 possible intervals, 630 (20.0%) were excluded for the following reasons: disability was present during the comprehensive assessment (n = 497), the interval was shorter than 12 months (n = 118), and the comprehensive assessment was not completed (n = 15). When disability was present during the subsequent comprehensive assessment, the 18-month interval was extended to identify a disability subtype if the participant was disabled during the monthly interview immediately before and after this assessment. For example, a participant who became newly disabled in Month 15 and remained disabled for the next 6 months or longer would fulfill criteria for long-term disability if she or he was disabled during the 18-month comprehensive assessment. Only 5.6% of the intervals were extended for this reason.

Statistical Analysis

The frequency distributions of the five disability subtypes and no disability were calculated over all of the 18-month intervals combined and, subsequently, for each of the 18-month intervals separately over time. The unit of measurement for these analyses, unlike the subsequent analyses, was the 18-month interval rather than the participant. Because disability at the start of an interval was an exclusion criterion, the disability subtypes represent incident cases. When these analyses were rerun using data from the first 356 enrolled participants who were randomly selected without sampling, the relative distribution of the disability subtypes did not change appreciably, although the proportion of intervals with no disability was modestly higher (results available upon request). To ensure that the results were not dependent on the selection of 18 months as the time interval, the distribution of disability subtypes was compared using alternative intervals of 15 and 21 (i.e., 18 ± 3) months. Because comprehensive assessments were available only at 18-month intervals, this “sensitivity” analysis was limited to the first 21 months of follow-up.

Next, the cumulative incidence rates per 100 persons were calculated for each of the disability subtypes over the 18-month intervals according to age, sex, and physical frailty. For each incidence rate, 95% confidence intervals were calculated by bootstrapping samples with replacement, using the entire cohort. Although point estimates, such as the cumulative incidence rates, are not subject to bias with repeated measures within subjects, the estimation of variance is. Bootstrapping with replacement is a robust method for estimating confidence intervals. One thousand samples were created, and the 2.5th and 97.5th percentiles were used to form the confidence intervals. Finally, to determine whether the disability subtypes differ according to age, sex, or physical frailty, multinomial logistic regression invoking generalized estimating equations (GEE) were run using the procedure MULTLOG in SUDAAN (Release 9.0, Research Triangle Institute, Research Triangle Park, NC) with an exchangeable correlation structure. This analytical strategy accounts for the correlation within participants. The corresponding P-values, which were corrected for multiple comparisons using the Hochberg method, denote the statistical significance of each factor after adjusting for the other two factors.

To address the small amount of missing monthly data on disability (<1%), multiple imputation was used with 100 random draws per missing observation. Following recent recommendations for binary longitudinal data, the probability of missingness was first imputed based on a GEE logistic regression model with a prespecified set of eight covariates (available upon request). Values were then imputed for each missing month sequentially from the first month to the last month with a second prespecified set of eight covariates (available upon request) along with the probability of missingness and the values for disability (present/absent) for each of the prior months.

All statistical tests were two-tailed, and P<.05 was considered to indicate statistical significance. With the exception of the GEE multinomial logistic regression model, all analyses were performed using SAS, version 9.1 (SAS Institute Inc., Cary, NC).

RESULTS

The baseline characteristics of the study participants are shown in Table 1. The majority of participants were female and white and did not live alone, and a sizable minority were physically frail. There was a wide range of ages, education, and scores on the Mini-Mental State Examination.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
</tr>
<tr>
<td>Median (range)</td>
<td>78 (70–96)</td>
</tr>
<tr>
<td>≥80, n (%)</td>
<td>303 (40.2)</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>487 (64.6)</td>
</tr>
<tr>
<td>Non-Hispanic white, n (%)</td>
<td>682 (90.5)</td>
</tr>
<tr>
<td>Lives alone, n (%)</td>
<td>298 (39.5)</td>
</tr>
<tr>
<td>Education, years, median (range)*</td>
<td>12 (0–17)</td>
</tr>
<tr>
<td>Chronic conditions†</td>
<td></td>
</tr>
<tr>
<td>Median (range)</td>
<td>2 (0–6)</td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
<td>416 (55.2)</td>
</tr>
<tr>
<td>Arthritis, n (%)</td>
<td>227 (30.1)</td>
</tr>
<tr>
<td>Diabetes mellitus, n (%)</td>
<td>137 (18.2)</td>
</tr>
<tr>
<td>Myocardial infarction, n (%)</td>
<td>136 (18.0)</td>
</tr>
<tr>
<td>Chronic lung disease, n (%)</td>
<td>132 (17.5)</td>
</tr>
<tr>
<td>Cancer, n (%)</td>
<td>124 (16.5)</td>
</tr>
<tr>
<td>Stroke, n (%)</td>
<td>65 (8.6)</td>
</tr>
<tr>
<td>Congestive heart failure, n (%)</td>
<td>49 (6.5)</td>
</tr>
<tr>
<td>Hip fracture, n (%)</td>
<td>34 (4.5)</td>
</tr>
<tr>
<td>Physically frail, n (%)</td>
<td>322 (42.7)</td>
</tr>
<tr>
<td>Mini-Mental State Examination score, median (range)</td>
<td>27 (12–30)</td>
</tr>
</tbody>
</table>

* Seventeen years denotes postgraduate education.

† Presented in descending order according to prevalence.
although the majority of participants completed high school and were cognitively intact. The median number of chronic conditions was two, with the most common being hypertension and arthritis.

Of the 754 participants, 33 (4.4%) contributed no intervals to the analysis, largely because of death within the first 12 months of follow-up; 131 (17.4%), 96 (12.7%), 93 (12.3%), 104 (13.8%), and 297 (39.4%) contributed one, two, three, four, and five intervals, respectively, as shown in the first two columns of Table 2. Of the 721 participants who contributed at least one interval, 243 (33.5%) had no disability during the follow-up period. Of the remaining 478 participants, 200 (41.8%), 90 (18.9%), 159 (33.3%), 106 (22.2%), and 95 (19.9%) had at least one interval with incident transient, short-term, long-term, recurrent, and unstable disability, respectively. Information on the number and percentage of participants with the occurrence of any disability subtype is shown in Table 2 according to the number of available intervals. Of the 297 participants having five intervals, representing 90 months of follow-up, 51.5% remained disability free, and another 26.6% had only a single interval with incident disability. Approximately one-quarter (24.7%) of all participants had two or more intervals with an incident disability subtype. Of the 478 participants having at least one interval with an incident disability subtype, 186 (38.9%) had a subsequent interval with disability.

The distribution of the disability subtypes and no disability over all of the 18-month intervals is shown in Figure 1. Incident disability was observed in approximately 30% of the intervals. The most common disability subtypes were transient and long term. For the long-term subtype, the median duration of disability was 16 months, with an interquartile range of 8 to 35 months. Of the 172 intervals with long-term disability, 86 (50.0%) included disability lasting 6 or more months as its first or only disability episode, whereas 113 (65.7%) ended in death or persisted to the end of the follow-up period. Of the 113 intervals with unstable disability, 42 (37.2%) included four disability episodes, 15 (13.3%) included five, and two (1.8%) included six. As shown in Figure 2, the distribution of the disability subtypes and no disability changed little over time, with no clear trends other than a modest increase in the likelihood of unstable disability. The distribution of the disability subtypes did not change appreciably when the time interval was redefined as 15 or 21 months (results available upon request).

Figure 3 provides the cumulative incidence rates (95% confidence intervals) per 100 persons for each of the disability subtypes over the 18-month intervals according to age, sex, and physical frailty, along with the corresponding P-values, which denote the statistical significance of each factor after adjusting for the other two factors as described in Methods. With the exception of short-term disability, the rates of the disability subtypes were significantly higher for participants who were aged 80 and older than for those who were aged 70 to 79. This age difference in rates was espe-
mostly pronounced for long-term disability. Although the rates for long-term, recurrent, and unstable disability were higher for women than men, these differences were not statistically significant in the adjusted analysis. Physical frailty was strongly associated with each of the disability subtypes, although the difference in rates was small for transient disability. The largest difference in rates was observed for long-term disability, which was unlikely to occur in the absence of physical frailty.

DISCUSSION

This prospective study of community-living older persons characterized five distinct subtypes of disability and evaluated how the incidence of these subtypes differ according to age, sex, and physical frailty. The most common subtypes were transient disability, defined as a single disability episode lasting only 1 month, and long-term disability, defined as one or more disability episodes, with at least one lasting 6 or more months. Although there were no differences according to sex in the incidence rates for any of the subtypes, differences in rates were observed for each subtype according to age and physical frailty, with only one exception, and were especially large for long-term disability.

This study is unique in that data on disability were available every month for nearly 8 years. This allowed subtypes of disability to be identified that cannot be easily distinguished by other studies with less frequent assessments. The disability subtypes were defined based on the number and duration of disability episodes within intervals of 18 months, which was the time between the comprehensive assessments. This allowed the determination of how the subtypes differed according to physical frailty, an important attribute that has been previously linked to functional decline and disability,\(^9,27,28\) and will allow other potential risk factors and precipitants to be evaluated in future studies. Although the presence of physical frailty substantially increased the likelihood of developing long-term, recurrent, and unstable disability, it was found to have only a modest effect on developing transient and short-term disability. These results suggest that the mechanisms underlying the different disability subtypes differ. In the setting of disability, for example, older persons who are physically frail are less likely to recover than those who are not physically frail,\(^18\) providing one possible explanation for the difference in results for long-term versus transient disability.

Prior studies have shown that disability commonly arises from a combination of predisposing factors that make one vulnerable and intervening illnesses or injuries that act as precipitants.\(^21,45\) Whether this model applies to each of the disability subtypes is uncertain but should be the focus of future research. Additional research may also be warranted to evaluate the natural history and prognosis of the different disability subtypes. It has previously been demonstrated, for example, that even brief periods of disability have considerable prognostic importance.\(^34\) Ultimately, the results of the current and future research may lead to an improved nosology of disability, as suggested previously,\(^5\) that takes into account time course, recovery, severity, and modality of onset and, in turn, to the development of new interventions designed to enhance independent function among older persons.

Although not intended to be definitive, the subtypes were informed by prior research and clinical judgment. For example, 6 months was chosen as the minimum duration to define episodes of long-term disability, because this period is often used to predict recovery after a disabling event.\(^18,39,40\) The operational definition of unstable disability, as three or more episodes of disability with none lasting 6 or more months (i.e., not long-term), was based on the theoretical construct proposed previously, as substantial fluctuations in function with minor external events.\(^38\) Recurrent disability was modeled after other clinically relevant outcomes, such as falls and urinary tract infections, which commonly recur over discrete periods of time. Finally, episodes of disability lasting only 1 month (transient)
were distinguished from those lasting 2 to 5 months (short term), because it is likely that this difference in duration is meaningful to older persons and their caregivers. Whether each of the five subtypes is truly distinct is an empirical question that will be addressed in subsequent epidemiological and qualitative studies.

Despite the high reliability of the disability assessment, some of the episodes of transient disability may simply reflect measurement error rather than a true change in functional status. However, the associations observed between transient disability and older age and physical frailty diminished the likelihood of measurement error, which would have biased the results to the null. Of the five subtypes, the most heterogeneous was long-term disability, which varied considerably according to duration and the possible inclusion of shorter episodes of disability. Whether these dis-

Figure 3. Cumulative incidence rates (95% confidence intervals (CIs)) per 100 persons for each of the disability subtypes over the 18-month intervals according to age, sex, and physical frailty. The P-values, which were corrected for multiple comparisons using the Hochberg method, account for the correlation within participants and denote the statistical significance of each of the three factors (age, sex, and physical frailty, respectively) after adjusting for the other two factors. The unit of measurement was the participant.
tinctions warrant subdivision of the long-term subtype will be the focus of future research.

As in most prior studies, disability was operationalized as a dichotomous state (present vs absent), and the severity of disability, as denoted by the number of disabled activities, and the specific activities that were disabled were not evaluated. The burden of disability in bathing, one of the most commonly disabled activities, was evaluated in an earlier longitudinal study, and it is hoped that the severity of disability can be incorporated in future studies of disability subtypes. Although focusing on 18-month intervals might be considered a limitation, the distribution of disability subtypes was not sensitive to modest changes in the duration of the time interval. Approximately 16% of the intervals were excluded, because disability was present during the relevant comprehensive assessment. However, the distribution of the disability subtypes in the first interval, which included all participants having at least 12 months of follow-up, did not differ appreciably from that in the subsequent intervals, suggesting that the exclusion of intervals likely had little meaningful effect on the results. Defining incident cases in the context of regularly spaced intervals will facilitate subsequent studies designed to determine whether the risk factors and precipitants of the five disability subtypes differ.

Approximately one-quarter of all participants had two or more intervals with an incident disability subtype. Because recurrent events within individuals are not independent, special statistical techniques were used to calculate and subsequently compare the cumulative incidence rates for the different disability subtypes. Recurrent events, such as disability, falls, delirium, and hospitalizations, are common in older persons, and analytical strategies that consider only the initial event are increasingly considered suboptimal.

The nearly complete ascertainment of disability and the low rate of attrition for reasons other than death strengthen the validity of the results. Nonetheless, because the duration of follow-up differed among the study participants, it might be argued that it would have been preferable to enroll new participants into the study every 18 months, using an open cohort design. The relative stability of the incidence rates for each of the disability subtypes over the course of nearly 8 years, however, suggests that the results of the study, which used a traditional, closed cohort design, are valid. While the participants were members of a single health plan in a small urban area, the high participation rate, which was low rate of attrition for reasons other than death strengthen the validity of the results. Nonetheless, because the duration of follow-up differed among the study participants, it might be argued that it would have been preferable to enroll new participants into the study every 18 months, using an open cohort design. The relative stability of the incidence rates for each of the disability subtypes over the course of nearly 8 years, however, suggests that the results of the study, which used a traditional, closed cohort design, are valid. While the participants were members of a single health plan in a small urban area, the high participation rate, which was 75%, enhances the generalizability of the results. Moreover, the study population reflects the demographic characteristics of persons aged 70 and older in New Haven county, which are comparable to those of the United States as a whole, with the exception of race. (New Haven county has a larger proportion of non-Hispanic whites in this age group than the United States: 91% vs 84%).

Over the past several years, strong evidence has been provided to support an emerging paradigm of disability as reversible and often recurrent. By identifying distinct subtypes of disability, it is hoped that understanding of the disabling process will be further enhanced and additional research that embraces the inherent complexity of disability will be spurred, with the goal of reducing the overall burden of disability in older persons.

ACKNOWLEDGMENTS

We thank Denise Shepard, BSN, MBA, Andrea Benjamin, BSN, Paula Clark, RN, Martha Oravetz, RN, Shirley Hannan, RN, Barbara Foster, Alice Van Wie, BSW, Patricia Fugal, BS, Amy Shelton, MPH, and Alice Kossack for assistance with data collection; Evelyne Gahbauer, MD, MPH, for data management and programming; Wanda Carr and Geraldine Hawthorne for assistance with data entry and management; Peter Charpentier, MPH, for development of the participant tracking system; Linda Leo-Summers, MPH, for assistance with Figures 1 and 2; and Joanne McGlindon, MDiv, MBA, for leadership and advice as the Project Director.

Conflict of Interest: The editor in chief has reviewed the conflict of interest checklists provided by the author and has determined that none of the authors have any financial or any other kind of personal conflicts with this manuscript.

Dr. Gill serves on a Scientific Advisory Board for Daiichi-Asubio Pharmaceuticals, Inc. The work for this report was funded by grants from the National Institute on Aging (R37AG17560, R01AG022993). The study was conducted at the Yale Claude D. Pepper Older Americans Independence Center (P30AG21342). Dr. Gill is the recipient of a Midcareer Investigator Award in Patient-Oriented Research (K24AG021507) from the National Institute on Aging.

Author Contributions: Dr. Gill had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: Gill. Acquisition of data: Gill. Analysis and interpretation of data: Gill, Guo, Alllore. Drafting of the manuscript: Gill, Guo, Alllore. Critical revision of the manuscript for important intellectual content: Gill, Guo, Alllore. Statistical analysis: Guo, Alllore.

Sponsor’s Role: The organizations funding this study had no role in the design or conduct of the study; in the collection, management, analysis, or interpretation of the data; or in the preparation, review, or approval of the manuscript.

REFERENCES

Appendix A. Operational Definitions of the Five Distinct Disability Subtypes

<table>
<thead>
<tr>
<th>Disability Subtype</th>
<th>Operational Definition*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transient</td>
<td>One episode of disability lasting only 1 month</td>
</tr>
<tr>
<td>Short-term</td>
<td>One episode of disability lasting 2 to 5 months</td>
</tr>
<tr>
<td>Long-term</td>
<td>One or more episodes of disability, with at least one lasting 6 or more months</td>
</tr>
<tr>
<td>Recurrent</td>
<td>Two episodes of disability, with none lasting 6 or more months</td>
</tr>
<tr>
<td>Unstable</td>
<td>Three or more episodes of disability, with none lasting 6 or more months</td>
</tr>
</tbody>
</table>

*Defined in the context of 18-month intervals, as described in the text. The duration of a disability episode was based on the number of consecutive months of disability, as determined during the monthly telephone interviews.