American Journal on Addictions
The official Journal of the American Academy of Addiction Psychiatry

Gender Differences in Mental Health Characteristics and Gambling among African-American Adolescent Gamblers
Silvia S. Martins a, Carla L. Storr a, Nicholas S. Ialongo a; Howard D. Chilcoat ab
a Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
b GlaxoSmithKline Worldwide Epidemiology, Research Triangle Park, North Carolina

Online Publication Date: 01 March 2008

To cite this Article: Martins, Silvia S., Storr, Carla L., Ialongo, Nicholas S. and Chilcoat, Howard D. (2008) 'Gender Differences in Mental Health Characteristics and Gambling among African-American Adolescent Gamblers', American Journal on Addictions, 17:2, 126 — 134

To link to this article: DOI: 10.1080/10550490701861227
URL: http://dx.doi.org/10.1080/10550490701861227

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
Gender Differences in Mental Health Characteristics and Gambling among African-American Adolescent Gamblers

Silvia S. Martins, MD, PhD,1 Carla L. Storr, ScD,1 Nicholas S. Ialongo, PhD,1 Howard D. Chilcoat, ScD1,2
1Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
2GlaxoSmithKline Worldwide Epidemiology, Research Triangle Park, North Carolina

This study explores gender differences in lifetime and recent substance use/internalizing behavior, childhood externalizing behavior, and gambling preferences among African-American youth gamblers. Data are from a prospective study of a community sample of 452 urban African-American youths who began entry into first grade and were followed for ten years. Gambling was associated with high teacher ratings of childhood externalizing behaviors among males and with high parent ratings of childhood impulsivity and hyperactivity among both genders. Internalizing behavior was associated with female gambling. No male-female differences in substance use/lifetime conduct disorder among gamblers were noted. Gambling preferences/frequency differed across genders.(Am J Addict 2008;17:126–134)

INTRODUCTION

Gambling activities have become extremely popular in the United States due to the legalization of gambling in almost all states.1 Though it is illegal for adolescents to gamble, adolescent gambling has been steadily increasing.2 A meta-analysis of gambling studies estimated that 77–83% of adolescents had gambled in the past-year.3 A number of adolescent gambling studies use an instrument that was derived from adult studies, the South Oaks Gambling Screen—revised for adolescents (SOGS-RA).4 A high score (4 or more) on the SOGS-RA indicates problem gambling, and a lower score (2–3) is indicative of “at-risk” gambling behavior.4 Problem gamblers experience a wide range of gambling-related problems such as legal troubles, family problems, poor academic performance, school dropout, anxiety, and depression.5 At-risk adolescent gamblers experience gambling-related consequences that often negatively impact their lives.6–8 Rates of problem gambling (3.5–8%) and of at-risk gambling (10–15%) among adolescents are higher than rates found among adults in the general population.9 African-Americans have been found to have high rates of gambling problems,10 yet little is known about gambling habits and characteristics associated with gambling in urban, predominantly African-American youths who typically live in more disadvantaged environments and are more adversely affected by the negative consequences of illegal activities. One important environmental factor that has been associated with gambling and problem/pathological gambling is living in a disadvantaged neighborhood.11 The National Gambling Impact Study Commission has shown that lottery outlets are more common in poor neighborhoods.1 Welte and colleagues found that respondents who lived in disadvantaged neighborhoods had much higher rates of problem and pathological gambling as compared to those who did not live in disadvantaged neighborhoods.11 Neighborhood deterioration and disadvantage have been linked with other problem behaviors, such as crime and substance use.11 A recent study of a small sample (N = 188) of urban adolescents in Memphis (87% African-American, 46% male, mean age = 15.9 years) estimated that nearly one-quarter were at-risk gamblers and 13% were problem gamblers.8

Gambling and gambling problems are usually more common among adolescent males; the male-female ratio of problem gambling in adolescence varies from 3:1 to 5:1.12,13 In a sample of 534 adolescents, Desai and colleagues12 reported that female past-year gamblers included a lower proportion of African-American respondents as compared with female past-year non-gamblers, and that among males, there were more African-Americans among past-year gamblers as compared to past-year non-gamblers. However, African-American youths comprised only 12.5% (n = 60) of the study’s sample, and only half of them (n = 31) of them were past-year gamblers, so no further comparisons were made across race/ethnicities.12 Gender differences in gambling behavior have been noted among adolescents, and game preference seems to change.
with age. Boys prefer strategic forms of gambling (eg, card games, betting on sports, and gambling machines), while girls preferred non-strategic forms of gambling (eg, lottery and bingo). However, to date, no study has explored gender differences in gambling activities among an African-American adolescent sample. We believe that the same gender differences found in mainly Caucasian samples of adolescent gamblers will be found among African-American gamblers.

Gender differences have also been identified in the mental health of youths who participate in gambling. Desai et al. have shown that lifetime dysphoria/depression is associated with past-year gambling among adolescent girls. Externalizing behaviors such as conduct disorder and impulsivity have been associated with gambling and gambling problems in a community sample of Caucasian male adolescents. Impulsivity and childhood hyperactivity have also been associated with substance use in adolescence. Childhood aggressive behaviors have been largely associated with later substance use and delinquent behavior. Researchers have shown that externalizing behaviors are associated with gambling and not only with gambling problems. Even though studies have shown that adolescent gambling is associated with adolescent substance use, no study has investigated whether there are gender differences in the association between childhood externalizing behaviors (such as impulsivity, aggression, and hyperactivity) and adolescent gambling. Adolescent gambling and gambling problems are often associated with adolescent drug use, abuse, and dependence, and might share the same developmental roots.

Gender differences in personal and mental health characteristics have been found among gamblers in predominantly Caucasian youth samples, but very little is known about factors associated with gambling among urban African-American youths and whether similar gender differences exist in this subpopulation. Based on findings from previous studies, we hypothesized that gambling would be more strongly associated with substance use and childhood externalizing behaviors (impulsivity, aggression, and hyperactivity) among African American males than females, and that gambling would be more strongly associated with internalizing behaviors (anxiety and depressive feelings) among African-American females than males. We also hypothesized that male adolescents would gamble more frequently than females and prefer strategic forms of gambling. This study explores gender differences in lifetime and recent substance use and childhood internalizing and externalizing behavior, as well as gambling behaviors and preferences among gamblers identified in a community sample of urban African-American adolescents.

METHODS

Sample

Data are from a prospective study conducted within the context of a group randomized prevention trial targeting academic achievement and aggression in 27 first grade classrooms in nine urban primary schools primarily located in western Baltimore, N = 678. Details of the trial design and interventions are available elsewhere. Briefly, a randomized block design was employed, with schools serving as the clustering factor. Classrooms were divided into two intervention groups, one being classroom-based and the other involving the parents, and a control setting classroom that received the usual school curriculum. Both interventions focused on achievement and aggressive behavior with the long term goal of impacting on antisocial behavior, substance use, and anxious and depressive emotional problems. Students have been assessed annually since entering first grade in 1993. In spring 2004, when most of the cohort was in 11th grade, 76% of the original cohort (n = 515, 55% male, 88% African American, mean age 17.1 years) participated in a 60–90-minute self-administered computer with audio interview. An examination of the baseline measures for those who were lost to follow-up and those who were successfully followed revealed no statistically significant differences in teacher ratings of behavior, academic achievement, race/ethnicity, sex, or subsidized lunch status. The study sample for this study focuses on the 452 African-American adolescents (54% male, mean age 17.1 years). The 63 Caucasian youths excluded from our analyses (64% of the 39 males and 38% of the 24 females gambled in the past-year) did not differ from the African-American youths in regard to demographics and past-year gambling. Study protocols were approved by institutional review boards (IRB) of Johns Hopkins University. Parental signed consent and child assent were obtained.

Measures

Gambling

The South Oaks Gambling Screen—Revised for Adolescents (SOGS-RA) was included in the 2004 interview to assess gambling behaviors among adolescents. The SOGS-RA is a 12-item adaptation of the adult-orientated SOGS that assesses gambling behavior and gambling-related problems in the past 12-month time frame using wording of items and response options that reflect adolescent gambling behavior at an age-appropriate reading level. A score of 4 or more on the SOGS-RA indicates problem gambling, and a score of 2–3 is indicative of “at-risk” gambling behavior. Based on SOGS-RA questions, we created a strategic game variable (bet on games of personal skill, sports, card games, horse or dog races, dice games, coins in the past-year) and a non-strategic game variable (bingo, slot and poker machines, lottery, pull tabs and scratch), similar to those described elsewhere. We also created a general gambling frequency tertile variable (low, moderate, and high) derived from the SOGS-RA gambling frequency variables for each type of game. Using the SOGS-RA responses, we selected adolescents who were past-year gamblers. In our sample the SOGS-RA internal consistency reliability was alpha = 0.71, comparable to the reported scale of .80 in other samples.
Substance Use

Questions adapted from the Monitoring the Future National Survey assessed lifetime and past-year alcohol, tobacco, and other drug use from grades 6 to 11. Two illegal drug use variables (lifetime and past-year) were created by combining any indicated use of the following drugs: marijuana, cocaine, crack, heroin, hallucinogens, ecstasy (3,4-methylenedioxymethamphetamine; MDMA), and inhalants. Lifetime cumulative variables were created based on responses to the lifetime alcohol, tobacco and other drug use variables from grades 6 to 11 assessments.

Emotional Problems

In 2004, a 45-item scale, the Baltimore How I Feel Adolescent Version (BHIF-AY), assessed emotional problems.31 Youth report the frequency of depressive and anxious feelings over the last two weeks on a four-point scale from “never” (0) to “most times” (3). Both the depression and anxiety subscales show good concurrent validity.31 The internal consistency alphas for the BHIF-AY Depression and Anxiety subscales ranged between .79 and .88 through the middle school years.31 Two-week test-retest reliability coefficients were .76 and .83 for the Anxiety and Depression subscales, respectively, in middle school.31 In terms of concurrent validity, youth self-reports on the BHIF-AY Depression subscale in middle school were significantly associated with a diagnosis of major depressive disorder on the computerized-Diagnostic Interview Schedule for Children-IV (C-DISC-IV), whereas middle school BHIF-AY Anxiety subscale scores were significantly associated with a diagnosis of generalized anxiety disorder on the C-DISC-IV.32 After totaling the scores to each item, we created dichotomous anxious and depressive variables (ie, low and high levels of anxious symptoms divided at the mean). We opted to create dichotomous instead of tertile variables because data were skewed to the left.

Conduct Disorder

Conduct disorder was assessed yearly from grades 6 through 11 using the Diagnostic Interview Schedule for Children—Version IV (DISC-IV), a fully structured interview designed to be administered by lay interviewers.32 Any individual that met diagnostic criteria for lifetime conduct disorder in any of the 6th–11th grade assessments was classified as having a lifetime conduct disorder.

Childhood Behaviors

When the child was in first grade, parents rated their child’s adaptation to family/home task demands over the preceding three-week period using the Parent Observation of Child Adaptation (POCA).33 Adaptation was rated on a four-point frequency scale (1 = almost never to 4 = almost always), with higher scores reflecting more problems. We use the domains of aggressive/disruptive behavior (11 items, coefficient \(\alpha = 0.79 \)), students’ self-regulation (impulsivity, three items, coefficient \(\alpha = 0.47 \)), and motor control (hyperactivity, three items, coefficient \(\alpha = 0.54 \)). Parent ratings were categorized into levels representing low, moderate, and high levels of behavior problems.

Upon entry into first grade, teacher ratings of the same behaviors (aggressive behavior, impulsivity and hyperactivity) were also assessed using The Teacher Observation of Classroom Adaptation–Revised (TOCAR).34 A trained assessor guided the teacher through a structured interview of 36 items pertaining to the child’s adaptation to classroom task demands over the preceding three-week period. Each child is rated on a six-point frequency scale (1 = “almost never” to 6 = “almost always”); higher scores reflect more problems. Internal consistency reliabilities (Cronbach alpha) of all three domains exceed 0.8.34 Teacher ratings were also categorized into three levels (low, moderate, and high).

Demographic data (age, sex, and race) was obtained from school records. During the parent interview in first grade, parents reported their highest level of education. As another proxy for SES, the 2004 assessment included 10 standardized items from the Neighborhood Environment Scale (NES), which assesses exposure to deviant behavior in the neighborhood, including violent crime, drug use and sale, racism, and prejudice.35 The coefficient alpha for the total scale is .80.35 These items were summed and the score tertiled to reflect levels of neighborhood disadvantage: low, moderate, and high.

Statistical Analyses

Initially, we began by conducting exploratory analyses and contingency table analysis on the African-American adolescents who were past-year gamblers (n = 214, male gamblers versus female gamblers). Logistic regression models were used to compare gender differences of lifetime and past-year substance use, past-year anxious and depressive feelings, lifetime conduct disorder, childhood behaviors, gambling preferences, gambling frequency, and the occurrence of gambling problems based on responses to the 12 SOGS-RA scored items. Separate logistic models estimated gender differences for the entire African-American sample; in these cases, we also tested for gambling-gender interactions to determine whether gambling modified the association between gender and drug use, current mental health, and childhood externalizing behaviors. To accommodate the initial sample design (clustering of students within schools), statistical analysis was performed with STATA 8.2 using a variant of the Huber-White sandwich estimator of variance to obtain robust standard errors and variance estimates.36 Statistical results are presented via chi-square tests (\(\chi^2 \)) and \(p \) values, adjusted odds ratios (aOR), and 95% confidence intervals (95% CI).

RESULTS

Demographics

The overall estimated past-year gambling prevalence among the 452 adolescents 17-year-old African-American adolescents was 47.4% (95% CI = 42.7–52.0); 56.6% of males (n = 138), and 36.5% of females (n = 76) had
gambled in the year preceding the interview ($\chi^2 = 18.05$, df = 1, $p < .001$). There were no differences in neighborhood disadvantage ($\chi^2 = 2.54$, df = 2, $p = 0.281$), parents’ level of education ($\chi^2 = 1.25$, df = 3, $p = 0.742$), or first grade intervention status ($\chi^2 = 0.68$, df = 2, $p = 0.712$) between gamblers and non-gamblers. No gender differences were noted for neighborhood disadvantage ($\chi^2 = 0.07$, df = 2, $p = 0.970$), parents’ level of education ($\chi^2 = 0.57$, df = 3, $p = 0.903$), or first grade intervention status ($\chi^2 = 1.22$, df = 2, $p = 0.544$) among the 214 past-year gamblers.

Prevalence of past-year gambling problems (includes at-risk and problem gamblers according to the SOGS-RA) among male and female gamblers was 23.2% (n = 32, 20 at-risk gamblers and 12 problem gamblers) and 6.6% (n = 5, 4 at-risk gamblers and 1 problem gambler), respectively. Male and female problem gamblers represented 13.1% and 2.4% of the overall African-American sample, respectively. We did not test for gender differences among adolescents with gambling problems (at-risk and problem gamblers) due to the small number of females with gambling problems.

Substance Use and Other Mental Health Characteristics

We explored gender differences in substance use and other mental health characteristics among adolescents who reported gambling in the year prior to the interview and compared these findings to gender differences in the overall sample. There were no gender differences in lifetime or past-year substance use for any of the substances among past-year gamblers (see Figure 1), nor in the overall sample ($p > .05$). When testing for interactions between gender and gambling, gambling modified only one of the associations between substance use and gender.

While among non-gamblers, females were less likely than males to be past-year tobacco users (females: 17.7% vs. males: 27.5%, aOR = 0.6, 95% CI = 0.3–1.1, $p = .07$); among gamblers, females were more likely than males to be past-year tobacco users (females: 42.4% vs. males: 30.1%, aOR = 2.9, 95% CI = 1.5–5.5, $p = .002$).

Though female gamblers were more likely than male gamblers to report high levels of anxious (71% vs. 45%, aOR = 3.3, 95% CI = 1.6–6.8, $p = .001$) and depressive (59% vs. 41%, aOR = 2.2, 95% CI = 1.2–4.3, $p = 0.016$) feelings, these findings were similar to gender differences found in the overall sample (anxiety: 61% vs. 47%, aOR = 1.8, 95% CI = 1.2–2.8, $p = .004$; depressive feelings: 59% vs. 43%, aOR = 2.0, 95% CI = 1.3–2.9, $p < .001$). When we tested for interactions between gender and gambling, gambling was found to modify only the association between gender and anxious feelings, and not the association between gender and depressive feelings. Though among non-gamblers there were no gender difference in reporting past-year anxious feelings (females: 56.5%, males: 50%, aOR = 1.3, 95% CI = 0.7–22.1, $p = 0.392$), among gamblers, females were more likely than males to report past-year anxious feelings (females: 72.9%, males: 44.8%, aOR = 1.9, 95% CI = 1.1–3.6, $p = .035$).

Contrary to the finding that males were more likely to meet criteria for lifetime conduct disorder in the overall sample (29% vs. 15%, aOR = 2.3, 95% CI = 1.4–3.9, $p = .002$), no gender differences were found among the past-year gamblers (see Table 1). As expected, males in general were rated by teachers and parents to exhibit more externalizing behaviors than females. The same pattern emerged among gamblers, where males were more likely than females to have been rated by their first grade teacher to have higher levels of childhood externalizing behaviors; however, male
and female gamblers did not differ on high rates of childhood impulsivity and hyperactivity as rated by parents. When we tested for interactions between gender and gambling, gambling modified only the association between gender and high levels of childhood hyperactivity as rated by parents. Whereas among non-gamblers, males were more likely than females to have had high levels of childhood hyperactivity as rated by parents (aOR = 6.0, 95% CI = 2.7–13.3, p < .001), among gamblers, males did not differ from females in the odds of having had high levels of childhood hyperactivity (aOR = 0.6, 95% CI = 0.3–1.2, p = .148).

Gender differences also occurred at the individual game level (see Table 2). Male gamblers were more likely than female gamblers to gamble more frequently in the past-year (high frequency: 41% vs. 18%, aOR = 4.8, 95% CI = 1.1–4.5, p = 0.043). Male gamblers had more gambling-related problems (reflected as higher SOGS-RA scores) as compared to female gamblers (see Table 3). In particular, males were more likely to gamble again in an effort to regain what they had lost, have more school or family problems, and feel guilty about the amount of money lost than female gamblers (see Table 3).

DISCUSSION

The main findings of this study were:

1. there were no gender differences between gamblers in meeting criteria for lifetime conduct disorder (different from the overall sample);
2. male gamblers were more likely than their female counterparts to have been rated by their first grade
TABLE 2. Adjusted odds ratio of gambling preferences by gender among an urban sample of 17-year-old African-Americans actively gambling in the past year

<table>
<thead>
<tr>
<th>Category</th>
<th>aOR* (95% CI) †</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Played any strategic games</td>
<td>20.4 (2.60–159.74)</td>
<td>.004</td>
</tr>
<tr>
<td>Played cards for money</td>
<td>1.42 (0.62–3.23)</td>
<td>.404</td>
</tr>
<tr>
<td>Flipped coins for money</td>
<td>2.15 (1.05–4.39)</td>
<td>.036</td>
</tr>
<tr>
<td>Bet money on games of personal skill</td>
<td>3.63 (1.89–6.99)</td>
<td><.001</td>
</tr>
<tr>
<td>Bet money on sports games</td>
<td>2.45 (1.38–4.36)</td>
<td>.002</td>
</tr>
<tr>
<td>Bet money on horse or dog races</td>
<td>3.37 (0.37–30.38)</td>
<td>.278</td>
</tr>
<tr>
<td>Played dice games for money</td>
<td>4.15 (1.93–8.95)</td>
<td><.001</td>
</tr>
<tr>
<td>Played any non-strategic games</td>
<td>0.36 (0.22–0.57)</td>
<td><.001</td>
</tr>
<tr>
<td>Played bingo for money</td>
<td>0.32 (0.13–0.83)</td>
<td>.018</td>
</tr>
<tr>
<td>Played slot machines, poker machines or other gambling machines for money</td>
<td>0.51 (0.13–1.94)</td>
<td>.323</td>
</tr>
<tr>
<td>Played scratch tabs for money</td>
<td>0.48 (0.24–0.95)</td>
<td>.036</td>
</tr>
<tr>
<td>Played lottery for money</td>
<td>0.32 (0.12–0.84)</td>
<td>.021</td>
</tr>
<tr>
<td>Played pull tabs for money</td>
<td>1.63 (0.14–18.38)</td>
<td>.694</td>
</tr>
</tbody>
</table>

*Adjusted odds ratio: adjusted for neighborhood disadvantage and intervention status.
†Females are comparison group.

Strategic games: games of personal skill (eg, pool, golf, bowling), card games (eg, poker), flipping coins, sports, horse or dog races, and dice games.
Non-strategic games: bingo, slot and poker machines, lottery, pull tabs, and scratch tabs.

Our hypothesis that male adolescent gambling would be more strongly associated with substance use was not supported. Past-year alcohol use was associated with gambling in both genders, resembling findings from other studies conducted among samples of mainly Caucasian adolescents. Consequences of meeting criteria for lifetime conduct disorder were found in this study among who gambled in the year prior to assessment. There is already evidence showing that girls who live in disadvantaged neighborhoods have higher rates of conduct disorders and problem behaviors as compared to girls living in more advantaged neighborhoods.

Contrary to established gender differences in lifetime conduct disorder, no gender differences in the prevalence of meeting criteria for lifetime conduct disorder were found in this study among who gambled in the year prior to assessment. There is already evidence showing that girls who live in disadvantaged neighborhoods have higher rates of conduct disorders and problem behaviors as compared to girls living in more advantaged neighborhoods.

Gender differences in the associations between other substance use and adolescent gambling still need to be better explained. There were no gender differences in lifetime and past-year substance use among as well as in the overall sample, which differs from general population studies, in which male adolescents are more likely to use drugs as compared to female adolescents. As such, the fact that no gender differences in substance use was found in the overall sample in our study might be reflective of the urban, inner-city setting of the study. Interestingly, when we tested for gambling-gender interactions, gambling was a stronger correlate of past-year tobacco use among females as compared to males. This result still needs to be replicated in future studies.

Mental Health Characteristics

Female gamblers were more likely to report anxious and depressive feelings than their male counterparts, parallel to gender differences in the overall sample. Because both gambling and psychiatric data were collected in the same year, the exact nature of the association between psychiatric symptoms still needs to be clarified. Females might have started to gamble to alleviate their psychiatric symptoms, or they might have developed psychiatric symptoms secondary to gambling, or even there might be a common shared vulnerability between psychiatric symptoms/disorders and gambling. On the other hand, our findings might just be reflecting gender differences in anxious and depressive feelings in the general adolescent population. However, it is important to note that when we tested for gambling-gender interactions, gambling was a stronger correlate of anxiety among females as compared to males.

Contrary to established gender differences in lifetime conduct disorder, no gender differences in the prevalence of meeting criteria for lifetime conduct disorder were found in this study among who gambled in the year prior to assessment. There is already evidence showing that girls who live in disadvantaged neighborhoods have higher rates of conduct disorders and problem behaviors as compared to girls living in more advantaged neighborhoods. Our results suggest that, at least in urban samples of youth, the more deviant females (ie, with higher levels of conduct disorders) are the ones that become involved with gambling activities in adolescence. Future studies with larger female samples are needed in order to replicate this finding.

Childhood externalizing behaviors might play a role in adolescent gambling initiation in both genders. We hypothesize that the discrepancy of parents and teachers ratings of childhood externalizing behaviors among respondents who later were identified as male and female gamblers might have occurred because correlations are often modest between different informants, as they access different types of environmental influences (classroom rules vs. family/household standards) as well as have different standards for rating problems. Parents might have a tendency to minimize their own children’s externalizing behaviors as well: they might have also experienced the same childhood externalizing behaviors their children now experience and perhaps believe that these
<table>
<thead>
<tr>
<th>In the past 12 months...</th>
<th>Male (%)</th>
<th>Female (%)</th>
<th>aOR* (95% CI)†</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>How often have you gone back another day to try and win back money you lost gambling?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Every time/most of the time</td>
<td>12.3</td>
<td>2.6</td>
<td>7.11 (1.81–27.96)</td>
<td>0.005</td>
</tr>
<tr>
<td>Some of the time</td>
<td>25.4</td>
<td>10.5</td>
<td>3.60 (1.56–8.32)</td>
<td>0.003</td>
</tr>
<tr>
<td>Never</td>
<td>62.3</td>
<td>86.8</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>When you were betting, have you ever told others you were winning money when you weren’t?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>8.7</td>
<td>6.6</td>
<td>1.37 (0.48–3.99)</td>
<td>0.555</td>
</tr>
<tr>
<td>No</td>
<td>91.3</td>
<td>93.4</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Has your betting money ever caused any problems for you such as arguments with family and friends, or problems at school or work?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>14.5</td>
<td>1.3</td>
<td>12.62 (1.59–100.11)</td>
<td>0.016</td>
</tr>
<tr>
<td>No</td>
<td>85.5</td>
<td>98.7</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Have you ever gambled more than you had planned to?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>19.6</td>
<td>7.9</td>
<td>2.78 (0.89–8.79)</td>
<td>0.078</td>
</tr>
<tr>
<td>No</td>
<td>80.4</td>
<td>92.1</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Has anyone criticized your betting, or told you that you had a gambling problem whether you thought it true or not?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>5.8</td>
<td>1.3</td>
<td>4.94 (0.54–45.40)</td>
<td>0.158</td>
</tr>
<tr>
<td>No</td>
<td>94.2</td>
<td>98.7</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Have you ever felt bad about the amount of money you bet, or about what happens when you bet money?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>11.6</td>
<td>1.3</td>
<td>10.45 (1.55–70.56)</td>
<td>0.016</td>
</tr>
<tr>
<td>No</td>
<td>88.4</td>
<td>98.7</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Have you ever felt like you would like to stop betting, but didn’t think you could?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>9.4</td>
<td>5.3</td>
<td>1.83 (0.61–5.51)</td>
<td>0.285</td>
</tr>
<tr>
<td>No</td>
<td>90.6</td>
<td>94.7</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Have you ever hidden from family or friends any betting slips, IOUs, lottery tickets, money that you won, or any signs of gambling?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>3.6</td>
<td>2.6</td>
<td>1.29 (0.21–8.09)</td>
<td>0.786</td>
</tr>
<tr>
<td>No</td>
<td>96.4</td>
<td>97.4</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Have you had money arguments with family or friends that centered on gambling?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>5.1</td>
<td>1.3</td>
<td>3.94 (0.48–32.26)</td>
<td>0.201</td>
</tr>
<tr>
<td>No</td>
<td>94.9</td>
<td>98.7</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Have you borrowed money to bet and not paid it back?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>4.4</td>
<td>1.3</td>
<td>3.23 (0.32–32.09)</td>
<td>0.317</td>
</tr>
<tr>
<td>No</td>
<td>95.7</td>
<td>98.7</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Have you ever skipped or been absent from school or work due to betting activities?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>5.1</td>
<td>0.0</td>
<td>n/a#</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>94.9</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Have you borrowed money or stolen something in order to bet or to cover gambling activities?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>1.5</td>
<td>0.0</td>
<td>n/a#</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>98.5</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOGS-RA Scores‡

- 1: recreational gamblers with no problems
 - Male: 76.8%
 - Female: 93.4%
 - aOR: 1.00
- 2–3: at-risk gamblers
 - Male: 14.5%
 - Female: 5.3%
 - aOR: 3.69 (1.19–11.41)
- ≥4: problem gamblers
 - Male: 8.7%
 - Female: 1.3%
 - aOR: 7.76 (0.93–64.85)

*Adjusted odds ratio: adjusted for neighborhood disadvantage and intervention status.
†Females are comparison group.
‡Female recreational gamblers are comparison group.
#Odds ratio not available because no females answered yes to this question.
are normative behaviors. Thus, parents might be less able than teachers to identify externalizing behaviors. Teachers might be better prepared than parents to identify childhood externalizing behaviors. On the other hand, parents might be able to better identify at least some of the childhood externalizing behaviors in their own household. The relationship between childhood externalizing behaviors and adolescent gambling needs to be further explored in future longitudinal studies.

Gambling Preferences, Gambling Frequency, and Gambling-Related Problems on the SOGS-RA

Fewer adolescent females gambled and had gambling problems as compared to males, which is in similar to the findings from other studies.\(^\text{12–15.17}\) The proportion of adolescents who gambled in the past-year was lower than that reported in other studies.\(^\text{3,8}\) This might have occurred because not all forms of gambling are legalized in Maryland, or perhaps due to differences in study methodology. If casinos and slot machines are legalized in Maryland in the future, we might expect the proportion of adolescents who gamble to increase.\(^\text{43}\)

Limitations and Strengths

This study has several strengths and limitations. A strength of this study is the sample, selected from an epidemiologically defined population representative of African-American students entering public schools in urban neighborhoods. The availability of longitudinal data on drug use, conduct disorders, and both parent and teacher ratings of childhood maladaptive behaviors is another strength of the study. One potential limitation is that self-reports could lead to response bias in cross-sectional results. Inherent in any longitudinal study is the possibility of attrition, especially when children are followed-up over a ten year period. While 24% attrition was observed, it appeared to be non-differential in respect to baseline demographic characteristics.\(^\text{27}\) Another limitation of our study was the fact that there was a low number of problem gamblers, which did not allow for meaningful analyses focusing on this specific subgroup. Also, analyses of associations of drug use, mental health problems, and conduct disorders with gambling were based on cross-sectional data that limit our ability to make causal inferences. Because of the small number of Caucasians in the original sample, we were not able to test for racial/ethnic differences in gambling.

CONCLUSION

Adolescent gambling among this African-American urban sample was associated with substance use in both genders and with lifetime conduct disorder and psychiatric symptoms in females. Male gamblers had higher levels of externalizing behaviors as compared to female gamblers. Gender-specific characteristics need to be taken into account in prevention programs that aim to reduce adolescent gambling and forestall the progression from gambling to the development of gambling problems.

This study was supported by a Young Investigator Incentive Grant from the Institute for Research on Pathological Gambling and Related Disorders, Division on Addictions, Harvard Medical School, Cambridge Health Alliance (Dr. Martins). Dr. Martins received a post-doctoral scholarship from the Brazilian Council of Research (CNPq) while she conducted this study. JHU PIRC Second Generation Intervention Trial is funded by grant DAI1796-01AJ from the National Institute on Drug Abuse, Bethesda, MD (Dr. Nicolas Ialongo).

The authors thank Scott Hubbard for the data management.

REFERENCES

